
PHASE RETRIEVAL FOR SIGNALS IN UNION OF SUBSPACES

M. Salman Asif∗

Electrical and Computer Engineering
University of California, Riverside

Chinmay Hegde†

Electrical and Computer Engineering
Iowa State University

ABSTRACT

We consider the phase retrieval problem for signals that be-
long to a union of subspaces. We assume that amplitude mea-
surements of the signal of length n are observed after pass-
ing it through a random m × n measurement matrix. We
also assume that the signal belongs to the span of a single
d-dimensional subspace out of R subspaces, where d � n.
We assume the knowledge of all possible subspaces, but the
true subspace of the signal is unknown. We present an al-
gorithm that jointly estimates the phase of the measurements
and the subspace support of the signal. We discuss theoretical
guarantees on the recovery of signals and present simulation
results to demonstrate the empirical performance of our pro-
posed algorithm. Our main result suggests that if properly
initialized, then O(d+ logR) random measurements are suf-
ficient for phase retrieval if the unknown signal belongs to the
union of R low-dimensional subspaces.

Index Terms— alternating minimization, subspace iden-
tification, block sparsity.

1. INTRODUCTION

Phase retrieval refers to a broad class of problems in which
we seek to recover a real- or complex-valued signal from its
amplitude measurements. We assume that an unknown signal,
x∗ ∈ Rn, is measured via (possibly noisy) observations of the
form:

yi = |〈ai,x∗〉|+ ei, i = 1, . . . ,m, (1)

Throughout this paper, we assume that the measurements are
Gaussian, i.e., each element of ai ∼ N (0, 1). The task is to
recover an estimate of x∗ from the (phaseless) measurements
y ∈ Rm.

Our focus is on the special case where x∗ is assumed to
belong to a union of subspaces. Formally, let us assume that
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we are given a collection of we represent the union of sub-
spaces as

M = {x ∈ Rn|x = Uiα for some i ∈ {1, . . . , R}},

where Ui ∈ {U1,U2, . . . ,UR} and each Ui ∈ Rn×d is an
orthonormal basis for a d-dimensional subspace of Rn and
α ∈ Rd is a coefficient vector. Figure 1 is a depiction of a
union of subspaces (planes). Throughout this paper, we as-

Sparsity Models

[Baraniuk, Cevher, Duarte, Hegde, 2010]

Idea: structure , restricted support

Definition
A structured sparsity model M is defined by a family of permissible
supports M = {⌦1, . . . ,⌦a} where ⌦i ✓ [n]:

M = {x 2 Rn | supp(x) ✓ ⌦i for some i}
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Fig. 1: Illustration of a union-of-subspaces.

sume thatM is known, and that x∗ ∈ M (i.e., we consider
no model mismatch). For the rest of this paper, we ignore
noise (i.e., we set ei = 0) while noting that most of our ar-
guments carry over under sub-gaussian assumptions on the
noise variables ei.

We present a two-stage algorithm in which we first con-
struct a coarse initial estimate of the signal using spectral
initialization. Then we iteratively refine the signal estimate
using an alternating minimization method in which we alter-
nately solve a least-squares problem with union-of-subspace
constraints and update the measurement phase.

We analyze the performance of our proposed algorithm
with theoretical guarantees. Our main result is given in The-
orem 4.1, which suggests that m > C(d+ logR) i.i.d. Gaus-
sian measurements are sufficient for the recovery of any signal
x∗ ∈ M, where C > 0 is a constant factor. We also analyze
the empirical performance of our algorithm using simulated
measurements. The results are summarized in Figure 2.

2. BACKGROUND

The phase retrieval problem has been extensively studied over
the last few decades [1, 2, 3] and it appears in several applica-



tions, including optical imaging [2, 4], microscopy [5, 6], and
X-ray crystallography [7].

Phase retrieval is a non-convex problem and classical so-
lution methods rely on alternating projection heuristics; ex-
amples include Gerchberg-Saxton [1] and Fienup algorithms
[2]. In recent years, lifting-based methods were introduced
that reformulate the phase retrieval as a rank-one matrix re-
covery problem and relax it to a nuclear norm minimization
problem that can be solved as a semidefinite program [3].
Because of large computational complexity and memory re-
quirements of semidefinite program-based approaches, they
are infeasible for large-scale problems. More recently, a num-
ber of convex and non-convex methods have been proposed
for solving phase retrieval problem with theoretical perfor-
mance guarantees [8, 9, 10, 11, 12, 13]. Almost all these
methods rely on estimating a good initial solution via the so-
called spectral initialization method. In its simplest form, a
spectral initializer computes the top singular vector of the fol-
lowing Hermitian matrix:

G =
1

m

m∑
i=1

y2i aia
T
i , (2)

which is equivalent to finding a unit norm vector x that maxi-
mizes the inner product between the observed amplitude vec-
tor y and |Ax|. In our proposed algorithm, we use a similar
approach for initialization in which we estimate an initial so-
lution in every subspace and select the one that maximize the
inner product.

3. ALGORITHM

Our algorithm follows a two-stage approach that has become
common in the phase retrieval literature.

• Initialization: We first construct a coarse initial esti-
mate of the signal. Specifically, we obtain a signal esti-
mate x0 using spectral initialization process described
in Algorithm 1. Such an estimate is expected to satisfy
the following condition:

dist
(
x0,x∗

)
≤ δ ‖x∗‖2

for some small constant δ, where dist (·, ·) is a suitably
defined distance measure.

• Refinement: We then sequentially refine this estimate
using a strategy based on alternating minimization, fol-
lowing a variant of [10, 14, 15]. We prove that our
refinement strategy demonstrates linear convergence to
x∗, i.e., for t = 0, 1, 2, . . ., our sequence of estimates
satisfies:

dist
(
xt+1,x∗

)
≤ ρ dist

(
xt,x∗

)
.

Algorithm 1 PR-UoS: Spectral initialization

Input: A,y, {U1, . . . ,UR}

1: Compute top singular vector for every subspace as

α̂r = argmax
α:‖α‖2=1

‖y ◦AUrα‖2. (3)

2: Select the subspace that maximizes the objective in (3):

r∗ = argmax
r

‖y ◦AUrα̂r‖2.

Output: x0 ← Ur∗αr∗ .

Algorithm 2 PR-UoS: Descent

Input: A,y,M

1: Initialize x0 according to Algorithm 1
2: for t = 1, · · · , T do
3: pt ← sign

(
Axt−1

)
,

4: xt = argminx∈M ‖pt ◦ y −Ax‖2
5: end for

Output: x̂← xT .

4. ANALYSIS

Our overall algorithm is described in pseudocode form in Al-
gorithm 2. In this section, we discuss some theoretical guar-
antees for subspace identification and signal reconstruction
using our proposed two-step method.

4.1. Analysis of Descent

This part of the algorithm is described in Lines 2-5 of Al-
gorithm 2. Once we obtain a good enough initial estimate
x0 ∈ M such that dist

(
x0,x∗

)
≤ δ0 ‖x∗‖2, we construct a

method to refine this estimate.
The intuition is as follows. The observation model in (1)

can be restated as follows:

sign (〈ai,x∗〉) ◦ yi = 〈ai,x∗〉 ,

for all i = {1, 2, . . . ,m}. To ease notation, denote the
phase vector p ∈ Rm as a vector that contains the un-
known signs of the measurements, i.e., pi = sign (〈ai,x〉)
for all i = {1, 2, . . . ,m}. Let p∗ denote the true phase
vector and let P denote the set of all phase vectors, i.e.
P = {p : pi = ±1, ∀i}. Then our measurement model gets
modified as:

p∗ ◦ y = Ax∗.



Therefore, the recovery of x∗ can be posed as a (non-
convex) optimization problem:

min
x∈M,p∈P

‖Ax− p ◦ y‖2 (4)

To solve this problem, we alternate between estimating p
and x. We perform two estimation steps:

(a) if we fix the signal estimate x, then the minimizer p ∈
P is given in closed form as:

p = sign (Ax) , (5)

(b) and if we fix the phase vector p, the signal vector x ∈
Ms can be obtained by solving a sparse recovery prob-
lem,

min
x∈M

‖Ax− p ◦ y‖2. (6)

We now analyze our proposed descent scheme. We obtain
the following theoretical result:

Theorem 4.1. Given an initialization x0 ∈ M satisfying
dist

(
x0,x∗

)
≤ δ ‖x∗‖2, for 0 < δ0 < 1, if the number of

(Gaussian) measurements,

m > C (d+ logR) ,

then with high probability, the iterates xt+1 of Algorithm 2,
satisfy:

dist
(
xt+1,x∗

)
≤ ρ dist

(
xt,x∗

)
, (7)

where xt,xt+1,x∗ ∈M, and 0 < ρ < 1 is a constant.

Proof sketch: The high level idea behind the proof is that
with a δ-ball around the true signal x∗, the “phase noise” can
be suitably bounded in terms of a constant times the signal es-
timation error. To be more precise, suppose that z∗ = Ax∗ =
p∗ ◦ y. Then, at any iteration t, we have:

zt = pt ◦ y
= (pt − p∗) ◦ y + p∗ ◦ y
= z∗ + et,

where et can be viewed as the “phase noise”. Now, examining
Line 4 of the above algorithm, we have:∥∥Axt − pt ◦ y

∥∥
2
≤
∥∥Ax∗ − pt ◦ y

∥∥
2

(feasibility of x∗)

=
∥∥z∗ − zt

∥∥
2

=
∥∥et∥∥

2
.

On the other hand, we have:∥∥Axt − pt ◦ y
∥∥
2
=
∥∥Axt − zt

∥∥
2

≥
∥∥Axt − z∗

∥∥
2
−
∥∥z∗ − zt

∥∥
2

=
∥∥A(xt − x∗)

∥∥
2
−
∥∥et∥∥

2

≥ (1− δ0)
∥∥xt − x∗

∥∥
2
−
∥∥et∥∥

2
,

where the second inequality follows from the triangle inequal-
ity and the last inequality follows from the restricted isometry
property of A (with constant δ0) over the union of subspaces
M; for Gaussian A, this holds provided:

M ≥ C

δ20
(d+ logR),

for any finite union of subspaces M [16]. Rearranging the
inequalities provide us the following bound:∥∥xt − x∗

∥∥
2
≤ 2

1− δ0
∥∥et∥∥

2
.

It remains to show that ‖et‖2 can be bounded in terms of∥∥xt−1 − x∗
∥∥
2
. We do this through Lemma 4.2 below. Con-

sequently, we get∥∥xt − x∗
∥∥
2
≤ 2ρ′

1− δ0
∥∥xt−1 − x∗

∥∥
2
,

where ρ′ is a small enough constant.
We therefore achieve a per-step error reduction scheme of

the form: ∥∥xt+1 − x∗
∥∥
2
≤ ρ0

∥∥xt − x∗
∥∥
2
,

if the initial estimate x0 satisfies
∥∥x0 − x∗

∥∥
2
≤ δ0 ‖x∗‖2,

and this result can be trivially extended to the case where the
initial estimate x0 satisfies

∥∥x0 + x∗
∥∥
2
≤ δ0 ‖x∗‖2, hence

giving the convergence criterion of the form (for ρ < 1):

dist
(
xt+1,x∗

)
≤ ρ dist

(
xt,x∗

)
.

We now state Lemma 4.2 without proof. A proof will be
provided in an extended version of this paper [17]. The proof
follows an adaptation of the approach in [14, 15], which itself
is based on the approach of [18].

Lemma 4.2. As long as the initial estimate is a small distance
away from the true signal x∗ ∈M, dist

(
x0,x∗

)
≤ δ ‖x∗‖2,

and subsequently, dist (xt,x∗) ≤ δ ‖x∗‖2, where xt is the
tth update of Algorithm 2, then the following bound holds for
any t ≥ 0: ∥∥et+1

∥∥
2
≤ ρ1

∥∥xt − x∗
∥∥
2
,

with high probability, as long as m > C(d + logR) and
ρ1 < 1 is a constant.

5. SIMULATION RESULTS

In this section, we present some simulation results to demon-
strate the performance of our proposed algorithm for different
values of signal length (n), number of subspaces (R), and the
dimension of each subspace (d). The number of measure-
ments (m) in all our simulations is same as n. Figure 2 sum-
marizes our simulation results, where each point represents



Fig. 2: Probability of success in signal recovery for different values of n, d,R. m = n in all the simulations.

the probability of success in signal recovery for the given val-
ues of n, d,R.

Our simulation setup is as follows. For given values of
n,R, d, we first generated an n × n random matrix A with
i.i.d. Gaussian entries. Then we selected an n × n matrix
Q with orthogonal columns and generated {U1, . . .UR} by
selecting d columns from Q at random for each Ui. We gen-
erated x∗ = Uiα by picking a Ui at random and creating
α with i.i.d. Gaussian entries. We simulated measurements
as y = |Ax∗| and estimated x̂ using the two-stage phase re-
trieval process described in Algorithm 2. We performed 100
independent trial for each tuple n,R, d. In every trial, we con-
sidered the recovery successful if the normalized difference
between the true and estimated signals

‖x∗ − x̂‖2
‖x∗‖2

< τ,

where τ = 10−5 is a threshold.
We observe that as m/d increases, the probability of suc-

cess approaches 1. The reconstruction is almost always pos-
sible if m

d > 8. We also observe that increasing the number
of subspaces (R) has very little effect on the recovery perfor-
mance once m

d increases beyond a certain value.
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